B.S. in Aerospace Engineering

The Bachelor of Science in Aerospace Engineering program exists in partial fulfillment of the University's purpose "to provide a comprehensive education to prepare graduates for productive careers and responsible citizenship with special emphasis on the needs of aviation, aerospace engineering, and related fields." The program's focus is primarily on the engineering of mission-oriented vehicles for atmospheric and space flight.

Within a few years of graduation, the alumni of the BSAE program are expected to have successful engineering careers as productive members or leaders within teams or organizations or as independent innovators, to have applied creative thinking and practical problem-solving skills to the solution of problems or to the development of processes or products for the aerospace industry, or to be engaged in advanced studies.

Furthermore, these alumni are expected to be responsible and ethical members of society and the engineering profession, and to pursue personal development through continuing education and active participation in professional organizations.

In order to achieve these objectives, the following student outcomes have been adopted:

- An ability to identify, formulate and solve complex engineering problems by applying principles of engineering, science, and mathematics
- An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
- 3. An ability to communicate effectively with a range of audiences
- 4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgements, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
- An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgement to draw conclusions.
- 7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies

To enter this program, students should have demonstrated competence in mathematics, physics, and chemistry in high school.

The Aerospace Engineering program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

Degree Requirements

The Bachelor of Science in Aerospace Engineering program requires successful completion of a minimum of 129 credit hours. The program may be completed in eight semesters, assuming appropriate background and full-time enrollment. A CGPA of 2.0 or higher with a grade of "C" or better within three attempts, including audits and withdrawals in all courses, is required for degree completion.

Remaining on Track for AE

Aerospace Engineering students must maintain a CGPA of 2.50 or higher, and achieve a GPA of 2.50 or higher in those courses prescribed by the College of Engineering, Engineering Fundamentals Program, First-Year for Aerospace, and achieve a GPA of 2.50 or higher in CHM, EGR, MA and PS courses prescribed in First-Year for Aerospace prior to and upon completing AE 201 to continue in the program.

Students will:

- Have an ability to to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
- Have an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
- Have an ability to communicate effectively with a range of audiences.
- Have an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
- Have an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
- Have an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
- Have an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

General Education Requirements

For a full description of Embry-Riddle General Education guidelines, please see the General Education section of this catalog. These minimum requirements are applicable to all degree programs.

Communication	n Theory & Skills (COM 122, COM 219, COM 221)	9
Lower-Level H	umanities (HU 14x) *	3
Lower-Level Se	ocial Sciences *	3
Lower or Uppe	r-Level Humanities or Social Sciences	3
Upper-Level H	umanities or Social Sciences *	3
Computer Scie	nce (EGR 115)	3
Mathematics (M	MA 241 & MA 242)	8
Physical and L	ife Sciences - (PS 150, PS 160 & PS 253)	7
Total Credits		39
UNIV 101	College Success	1
Mathematics		
MA 243	Calculus and Analytical Geometry III	4
MA 345	Differential Equations and Matrix Methods	4
AOC Specific	Math	3
MA 441	Mathematical Methods for Engineering and Physics I (Aero, Jet Prop AOC Only)	
MA 432	Linear Algebra (Astro, Rocket Prop AOC Only)	
Physical Scient	nce	
CHM 110	General Chemistry I	3
CHM 110L	General Chemistry I Laboratory	1
PS 250	Physics for Engineers III	3
Engineering C	Core	
AE 201	Aerospace Flight Vehicles	3
AE 313	Space Mechanics	3
AE 314	Experimental Aerodynamics	1
AE 315	Experimental Aerodynamics Laboratory	1
AE 316	Aerospace Engineering Materials	3
AE 318	Aerospace Structures I	3
AE 416	Aerospace Structures and Instrumentation	1
AE 417	Aerospace Structures and Instrumentation Laboratory	1
AE 442	Experimental Dynamics and Control	1

2 B.S. in Aerospace Engineering

AE 443	Experimental Dynamics and Control Laboratory	1
AE AOC Specific	Engineering Core	9
AE 307, AE 308 &	& AE 418 (Aero, Jet Prop AOC Only)	
AE 319, AE 323 8	& AE 429 (Astro, Rocket Prop AOC Only)	
EGR 101	Introduction to Engineering	2
EGR 120	Graphical Communications	3
ES 201	Statics	3
ES 202	Solid Mechanics	3
ES 204	Dynamics	3
ES 305	Thermodynamics	3
EE 327	Electrical Engineering Fundamentals	3
EE 328	Electrical Engineering Fundamentals	1
	Laboratory	
Total Credits		67
Choose one of t	he following Four Ontions	17
Aeronautics Ont	ion	17
	let Propulsion	
AE 403	Airplane Stability and Control	
AE 413	Airplane Stability and Control	
AL 420	Aircraft Pretail Design	
AE 421	Flight Dynamics and Control	
AE 432	tion	
Astronautics Op	Space Propulsion	
AE 414	Space Flopulsion	
AE 420	Spacecraft Annuale Dynamics	
AE 427	Spacecraft Control	
AE 434	Spacecraft Dotail Dogian	
AE 440		
Jet Propulsion C		
AE 403	Jet Propulsion	
AE 413	Airplane Stability and Control	
AE 432	Let Drepulsion Dreliminant Design	
AE 430	Jet Propulsion Preliminary Design	
AE 440	Set Propulsion Detail Design	
AE 414	Space Propulsion	
AE 426	Spacecraft Attitude Dynamics	
AE 434	Spacecraft Control	
AE 441	Rocket Propulsion Preliminary Design	
AE 451		6
Technical Electives (See Approved List)		Ø
Total Cradita		120
rotal Gredits		129

Aeronautics Plan of Study

Students should be aware that most courses in each academic year have prerequisites and/or corequisites (check the Undergraduate Courses section before registering for classes to ensure required sequencing). See the AE flowchart(s) from the department for the recommended plan of study.

NOTE: Students in the Aerospace Engineering program desiring to complete a minor must complete at least six credit hours of coursework applied to the minor that are not specifically required in the student's degree program.

Year One

		Credits
	See the College of Engineering, Engineering	33
	Fundamentals Program for course selection	
	Credits Subtotal	33.0
	Credits Total:	33.0
Assessed	Ontion	
Aeronautics	Option	
Year Two		
		Credits
AE 201	Aerospace Flight Vehicles	3
COM 221	Technical Report Writing	3
ES 201	Statics	3
ES 202	Solid Mechanics	3
ES 204	Dynamics	3
ES 305	Thermodynamics	3
MA 243	Calculus and Analytical Geometry III	4
MA 441	Mathematical Methods for Engineering and Physics I	3
PS 160	Physics for Engineers II	3
PS 250	Physics for Engineers III	3
PS 253	Physics Laboratory for Engineers	1
	Credits Subtotal	32.0
Year Three		
AE 307	Incompressible Aerodynamics	3
AE 308	Compressible Aerodynamics	3
AE 313	Space Mechanics	3
AE 314	Experimental Aerodynamics *	1
AE 315	Experimental Aerodynamics Laboratory *	1
AE 316	Aerospace Engineering Materials	3
AE 318	Aerospace Structures I	3
AE 403	Jet Propulsion	3
AE 413	Airplane Stability and Control	3
COM 219	Speech	3
EE 327	Electrical Engineering Fundamentals	3
EE 328	Electrical Engineering Fundamentals	1
	Laboratory	
MA 345	Differential Equations and Matrix Methods	4
	Credits Subtotal	34.0
Year Four		
AE 416	Aerospace Structures and Instrumentation *	1
AE 417	Aerospace Structures and Instrumentation Laboratory	1
AE 418	Aerospace Structures II	3
AE 420	Aircraft Preliminary Design	4
AE 421	Aircraft Detail Design	4
AE 432	Flight Dynamics and Control	3
AE 442	Experimental Dynamics and Control	1
AE 443	Experimental Dynamics and Control Laboratory	/ 1
	Humanities or Social Sciences Lower or Upper- Level Elective	- 3
	Humanities or Social Sciences Upper-Level Elective	3
	Approved Upper-Level Technical Electives	3
	Approved AE Upper-Level Technical Electives	3
	Credits Subtotal	30.0
	Credits Total:	120

Technical Electives

Two upper-level Technical Electives needs to be selected from the BSAE Approved Technical Electives list, in the areas of Engineering and Science, maintained by the AE Department. One Technical Elective must be a non-duplicating AE undergraduate or graduate course. The second Technical Elective can be any course on the BSAE Approved Technical Elective list. Proposed courses not on the list may be submitted to the AE Curriculum Committee.

* Lecture/Lab courses must be taken at the same time.

Astronautics Plan of Study

Students should be aware that most courses in each academic year have prerequisites and/or corequisites (check the Undergraduate Courses section before registering for classes to ensure required sequencing). See the AE flowchart(s) from the department for the recommended plan of study.

Because of new courses being phased in, this option is recommended for new students only.

NOTE: Students in the Aerospace Engineering program desiring to complete a minor must complete at least six credit hours of coursework applied to the minor that are not specifically required in the student's degree program.

Year One

	Credits
See the College of Engineering, Engineering Fundamentals Program for course selection	33
Credits Subtotal	33.0
Credits Total:	33.0

Astronautics Option

Year Two

		orcano
AE 201	Aerospace Flight Vehicles	3
COM 221	Technical Report Writing	3
ES 201	Statics	3
ES 202	Solid Mechanics	3
ES 204	Dynamics	3
ES 305	Thermodynamics	3
MA 243	Calculus and Analytical Geometry III	4
MA 345	Differential Equations and Matrix Methods	4
PS 160	Physics for Engineers II	3
PS 250	Physics for Engineers III	3
PS 253	Physics Laboratory for Engineers	1
	Credits Subtotal	33.0
Year Three		
AE 313	Space Mechanics	3
AE 314	Experimental Aerodynamics	1
AE 315	Experimental Aerodynamics Laboratory *	1
AE 316	Aerospace Engineering Materials	3
AE 318	Aerospace Structures I	3
AE 319	Aerodynamics	3
AE 323	Spacecraft Systems	3
AE 414	Space Propulsion	3
AE 426	Spacecraft Attitude Dynamics	3
COM 219	Speech	3
EE 327	Electrical Engineering Fundamentals	3
EE 328	Electrical Engineering Fundamentals Laboratory	1

MA 432	Linear Algebra	3
	Credits Subtotal	33.0
Year Four		
AE 416	Aerospace Structures and Instrumentation *	1
AE 417	Aerospace Structures and Instrumentation Laboratory	1
AE 427	Spacecraft Preliminary Design	4
AE 429	Space Environmental Applications	3
AE 434	Spacecraft Control	3
AE 445	Spacecraft Detail Design	4
AE 442	Experimental Dynamics and Control *	1
AE 443	Experimental Dynamics and Control Laboratory $_{*}^{*}$	1
	Humanities or Social Sciences Lower or Upper- Level Elective	3
	Humanities or Social Sciences Upper-Level Elective	3
	Approved Upper-Level Technical Electives	3
	Approved AE Upper-Level Technical Electives	3
	Credits Subtotal	30.0
	Credits Total:	129

Technical Electives

Two upper-level Technical Electives needs to be selected from the BSAE Approved Technical Electives list, in the areas of Engineering and Science, maintained by the AE Department. One Technical Elective must be a non-duplicating AE undergraduate or graduate course. The second Technical Elective can be any course on the BSAE Approved Technical Elective list. Proposed courses not on the list may be submitted to the AE Curriculum Committee.

Footnotes

Cradite

* Lecture/Lab courses must be taken at the same time.

Jet Propulsion Plan of Study

Students should be aware that most courses in each academic year have prerequisites and/or corequisites (check the Undergraduate Courses section before registering for classes to ensure required sequencing). See the AE flowchart(s) from the department for the recommended plan of study.

NOTE: Students in the Aerospace Engineering program desiring to complete a minor must complete at least six credit hours of coursework applied to the minor that are not specifically required in the student's degree program.

Year One

	Credits
See the College of Engineering, Engineering Fundamentals Program for course selection	33
Credits Subtotal	33.0
Credits Total:	33.0

Jet Propulsion Option

Year Two

		Credits
AE 201	Aerospace Flight Vehicles	3
COM 221	Technical Report Writing	3
ES 201	Statics	3
ES 202	Solid Mechanics	3
ES 204	Dynamics	3
ES 305	Thermodynamics	3

• ····

4 B.S. in Aerospace Engineering

	Cradite Total:	120
	Credits Subtotal	30.0
	Approved AE Upper-Level Technical Electives	3
	Approved Upper-Level Technical Electives	3
	Humanities or Social Sciences Upper-Level Elective	3
	Humanities or Social Sciences Lower or Upper- Level Elective	3
AE 443	Experimental Dynamics and Control Laboratory	1
AE 442	Experimental Dynamics and Control	1
AE 440	Jet Propulsion Detail Design	4
AE 435	Jet Propulsion Preliminary Design	4
AE 432	Flight Dynamics and Control	3
AE 418	Aerospace Structures II	3
AE 417	Aerospace Structures and Instrumentation Laboratory	1
AE 416	Aerospace Structures and Instrumentation	1
Year Four		
	Credits Subtotal	34.0
MA 345	Differential Equations and Matrix Methods	4
EE 328	Electrical Engineering Fundamentals Laboratory	1
EE 327	Electrical Engineering Fundamentals	3
COM 219	Speech	3
AE 413	Airplane Stability and Control	3
AE 403	Jet Propulsion	3
AE 318	Aerospace Structures I	3
AE 316	Aerospace Engineering Materials	3
AE 315	Experimental Aerodynamics Laboratory *	1
AE 314	Experimental Aerodynamics *	1
AE 313	Space Mechanics	3
AE 308	Compressible Aerodynamics	3
AE 307	Incompressible Aerodynamics	3
Year Three		JZ.U
F 3 233	Credits Subtotal	32.0
PS 253	Physics I aboratory for Engineers	1
PS 100	Physics for Engineers II	2
NA 441	Physics I Physics I	3
MA 243	Mathematical Matheds for Engineering and	3
N A A S S A A S		4

Technical Electives

Two upper-level Technical Electives needs to be selected from the BSAE Approved Technical Electives list, in the areas of Engineering and Science, maintained by the AE Department. One Technical Elective must be a non-duplicating AE undergraduate or graduate course. The second Technical Elective can be any course on the BSAE Approved Technical Elective list. Proposed courses not on the list may be submitted to the AE Curriculum Committee.

Footnotes

* Lecture/Lab courses must be taken at the same time.

Rocket Propulsion Plan of Study

Students should be aware that most courses in each academic year have prerequisites and/or corequisites (check the Undergraduate Courses section before registering for classes to ensure required sequencing). See

the AE flowchart(s) from the department for the recommended plan of study.

Because of new courses (including design courses) being phased in, this option is recommended for new students only.

NOTE: Students in the Aerospace Engineering program desiring to complete a minor must complete at least six credit hours of coursework applied to the minor that are not specifically required in the student's degree program.

Year One

	Credits
See the College of Engineering, Engineering Fundamentals Program for course selection	33
Credits Subtotal	33.0
Credits Total:	33.0

Cue dite

Rocket Propulsion Option

Year Two

		Credits
AE 201	Aerospace Flight Vehicles	3
COM 221	Technical Report Writing	3
ES 201	Statics	3
ES 202	Solid Mechanics	3
ES 204	Dynamics	3
ES 305	Thermodynamics	3
MA 243	Calculus and Analytical Geometry III	4
MA 345	Differential Equations and Matrix Methods	4
PS 160	Physics for Engineers II	3
PS 250	Physics for Engineers III	3
PS 253	Physics Laboratory for Engineers	1
	Credits Subtotal	33.0
Year Three		
AE 313	Space Mechanics	3
AE 314	Experimental Aerodynamics *	1
AE 315	Experimental Aerodynamics Laboratory *	1
AE 316	Aerospace Engineering Materials	3
AE 318	Aerospace Structures I	3
AE 319	Aerodynamics	3
AE 323	Spacecraft Systems	3
AE 414	Space Propulsion	3
AE 426	Spacecraft Attitude Dynamics	3
COM 219	Speech	3
EE 327	Electrical Engineering Fundamentals *	3
EE 328	Electrical Engineering Fundamentals Laboratory	1
MA 432	Linear Algebra	3
	Credits Subtotal	33.0
Year Four		
AE 416	Aerospace Structures and Instrumentation *	1
AE 417	Aerospace Structures and Instrumentation Laboratory	1
AE 429	Space Environmental Applications	3
AE 434	Spacecraft Control	3
AE 441	Rocket Propulsion Preliminary Design	4
AE 442	Experimental Dynamics and Control *	1
AE 443	Experimental Dynamics and Control Laboratory $_{*}^{*}$	′ 1
AE 451	Rocket Propulsion Detail Design	4
	Humanities or Social Sciences Lower or Upper- Level Elective	. 3

Credits Total:	129
Credits Subtotal	30.0
 Approved AE Upper-Level Technical Electives	3
Approved Upper-Level Technical Electives	3
Humanities or Social Sciences Upper-Level Elective	3

Technical Electives

Two upper-level Technical Electives needs to be selected from the BSAE Approved Technical Electives list, in the areas of Engineering and Science, maintained by the AE Department. One Technical Elective must be a non-duplicating AE undergraduate or graduate course. The second Technical Elective can be any course on the BSAE Approved Technical Elective list. Proposed courses not on the list may be submitted to the AE Curriculum Committee.

Footnotes

* Lecture/Lab courses must be taken at the same time.