Engineering Physics (EP)


EP 501  Numerical Methods for Engineers and Scientists  3 Credits (3,0)

Numerical methods for the solution of engineering physics problems; systems of linear equations, ordinary differential equations including one-dimensional initial value problems and boundary value problems; partial differential equations (PDEs) including elliptic, parabolic, and hyperbolic PDEs; finite difference method. Application to problems such as diffusion, transport, remote sensing, inversion, and plasma waves. Emphasis will be on computer implementation of numerical solutions. Knowledge of at least one programming language is required, with MATLAB strongly recommended.

EP 505  Spacecraft Dynamics and Control  3 Credits (3,0)

Review of dynamic systems modeling and analysis; classical and modern linear and nonlinear control techniques; orbital dynamics, orbital maneuvers and control. Attitude sensors and sensing techniques. Passive attitude control techniques including spin, dual-spin, gravity-gradient, and magnetic stabilization. Active control using gas jet thrusters, momentum wheels, reaction wheels, and control moment gyros. Application of optimal control techniques to spacecraft maneuver problems; design of open loop and feedback controls for linear and nonlinear spacecraft dynamical systems; case studies.

EP 507  Astrophysics I  3 Credits (3,0)

This course is a study of the basic physical processes operating in the astronomical environment: stellar structure, stellar evolution, and the interstellar medium, galaxies. Astrophysical concepts are emphasized, thus underlining the common features appearing within many astronomical systems.
Prerequisites: EP 455 and PS 320 and MA 345

EP 508  Astrophysics II  3 Credits (3,0)

Study of the basic physical processes operating in the Galaxy and extragalactic astronomical environments: galactic structure and evolution, the expanding universe, and cosmology. Astrophysical concepts are emphasized, thus underlining the common features appearing within many astronomical systems.

EP 509  Advanced Space Physics  3 Credits (3,0)

Plasma physics applied to the interplanetary medium and planetary magnetospheres: solar wind. Magneto-hydrodynamics. Interaction between planetary magnetospheres and the solar wind. Auroral dynamics. Planetary atmospheres and ionospheres. Magnetosphere-ionosphere coupling. Energetic particle dynamics. Ring currents. The space radiation environment. Space weather. Satellite missions to Earth and other planets.

EP 520  Advanced Planetary Sciences  3 Credits (3,0)

Study of the planetary system: origin, evolution, composition, present configuration, dynamics, interiors, surfaces, atmospheres, and magnetospheres of the planets and, where appropriate, similar aspects of the satellites, asteroids, and comets. Interpretations of existing data and definition of future experiments to aid in determination of the origin and evolution of the solar system are stressed.
Prerequisites: PS 303 and MA 345

EP 525  Observational Astronomy  3 Credits (3,0)

Basic design and use of an optical telescope, fundamentals of astronomical optics including refracting and reflecting systems, principles and applications of optical filters and adaptive optics. Design optimization and trade-offs in an observing system. Telescope system calibration and techniques for enhancing tracking accuracy. Visual observation and analysis of images of the sun, moon, planets, stars, nebulae, and galaxies. Electronic imaging including quantification of radiant energy, spectroscopy, and techniques for reducing the effects of noise sources. Optical and detector design trade-offs for measurement optimization.

EP 599  Special Topics in Engineering Physics  1-6 Credit

Individual independent or directed studies of selected topics.

EP 600  Experimental Methods in Space Science  3 Credits (3,0)

Measurement techniques for ground-based, rocket, and satellite-borne experiments are explored. Advantages, disadvantages, and limitations are quantitatively developed. In situ atmospheric composition measurements, charged particle detection for plasma characterization, optical remote sensing, and imaging techniques are included.

EP 605  Spacecraft Power and Thermal Design  3 Credits (3,0)

Spacecraft power and thermal energy management. Spacecraft power systems; sources of power; power subsystem function and design; energy storage devices; future concepts in spacecraft power systems. Review of the modes of heat transfer: conduction, radiation, and convection. Space environment, heating fluxes. Spacecraft thermal analysis. Thermal control hardware and design; active and passive thermal control. Emphasis on the design needs of instruments and their detector systems' power and thermal requirements.

EP 696  Graduate Internship in Engineering Physics  1-3 Credit

Temporary professional or industrial work appointments are made available to students enrolled in graduate programs at the University. An internship provides graduate students with an opportunity to extend their academic endeavors through the application of the theories and philosophies studied in the classroom to specific professional activities common to the workplace. They are academic /professional activities coordinated by the University between offering organizations and the graduate student. Prior approval of the graduate program coordinator is required.

EP 699  Special Topics in Engineering Physics  1-6 Credit

Individual independent or directed studies of selected topics.

EP 700  Thesis  1-9 Credit

A master-level research project in Space Science/Engineering Physics including an oral thesis defense and a written report satisfying all graduate school guidelines. The work is supervised by the student's advisor and thesis committee. The approval of the thesis committee is required to receive final thesis credit.

EP 701  Analytical Techniques in Engineering Physics  3 Credits (3,0)

This is a graduate course on mathematical techniques in engineering physics. It focuses on the application of advanced mathematical topics including Fourier and wavelet analysis, functional analysis, rotation groups and algebras, Legendre polynomials and functions and Bessel, Hermite and Laguerre polynomials to space science and spacecraft engineering problems.

EP 702  Theoretical Mechanics and Astrodynamics  3 Credits (3,0)

This graduate course is organized into two major parts: theoretical mechanics and astrodynamics. The first part is essentially a modern treatment of Lagrangian and Hamiltonian dynamics, as well as variational methods. The first part also covers several other advanced topics in analytical dynamics, including canonical transformations, Hamilton-Jacobi theory and canonical perturbation methods. The second part includes Keplerian and non-Keplerian motion, patched-conic orbits, perturbation methods, Lagrange's Planetary Equations, Gauss' Variational Equations and advanced topics in space navigation.

EP 703  Electrodynamics of Space Environment  3 Credits (3,0)

This is a graduate course on static and dynamic properties of electromagnetic fields. The objective of the course is to develop advanced concepts in electrostatics, magnetostatics and electrodynamics. This course also emphasizes various mathematical techniques for solving practical electromagnetic problems encountered in space plasma, antennas, propagation and scattering using Maxwell's equations.

EP 704  Stochastic Systems in Engineering Physics  3 Credits (3,0)

This course is an advanced graduate course in stochastic processes and their applications in physics and engineering. The course covers rigorously continuous-time and discrete-time random processes and principles of optimal estimation. It focuses on the following topics: foundations of the stochastic processes theory based on probability space and s-algebras of events, Gaussian processes, Markov processes, Brownian motion, and multidimensional Wiener process and their relation with the notion of "white noise", stochastic Ito integrals and stochastic differential equations, stationary processes and their spectral properties, conditional expectations and optimal estimation techniques, Kalman filtering and time-series.

EP 705  Optimal Dynamical Systems  3 Credits (3,0)

An advanced graduate course in optimal control systems. The course covers the principles of optimal control. It focuses on the following topics: classical calculus of variations, LQR and LQG methods, Pontryagin maximum principle, time-optimal control. The course is structured to emphasize some of the recent research activity in optimal dynamical systems analysis and control.

EP 706  Electro-Optical Engineering  3 Credits (3,0)

Investigates the basic aspects of digital and analog fiber-optics communication systems. Topics include sources and receivers, optical fibers and their propagation characteristics and optical fiber systems. The characteristics of lasers, optical amplifiers and detectors and noise will be investigated, and systems design of fiber optic communication systems will be addressed. Quantitative development of electro-optical remote-sensing systems such as LIDARs, Hyper Spectral Imaging, Multi-directional high throughput temperature imagers, very low light level white light and monochromatic visible and infrared-red all-sky cameras. New high quantum efficiency, low thermal and read out noise detectors. Compact and rugged zed space-borne facilities and integrated multi-instrument observing systems. Digital processing and analyses of various images recorded with satellite instrumentation as well as ground-based recording of all-sky monochromatic and wide band pass images. Application of all the above to medical, drug, hazardous chemical testing and detection as well as to industrial and space exploration needs.

EP 707  Nonlinear Dynamical Control Systems  3 Credits (3,0)

This course is a second graduate course in nonlinear dynamical control systems, organized into three major parts: differential geometric nonlinear control, advanced topics in feedback linearization and input-output and advanced stability analysis. The course is structured to emphasize some of the recent research activity in nonlinear dynamical systems analysis and control. It uses concepts from differential geometry, however the course is self contained in that the necessary mathematics will be taught as part of the course.

EP 708  Remote Sensing: Active and Passive  3 Credits (3,0)

Introduces students to concepts in remote sensing in the microwave and RF bands. The course will cover the fundamentals of radar and passive remote sensing. This includes the underlying physics of scattering and radiative transfer, analytical techniques, system design and examples illustrating the use of radiometer and radar as tools for monitoring the natural environment. The course will provide a systems perspective to remote sensing instrument design. The students will obtain the knowledge and ability to perform basic systems engineering calculations, evaluate tradeoffs and evaluate advanced systems.

EP 709  Upper Atmospheric Physics  3 Credits (3,0)

In this course, we reveal the fundamental processes controlling the structure, composition, dynamics and energetics of the terrestrial upper atmosphere (the near-Earth space environment). Topics include vertical structure of the atmospheric gases, solar radiation and photolysis, collisional processes, photochemistry and transport, thermodynamics, radiative processes, dynamics of the upper atmosphere, aurora and airglow phenomena, layered phenomena: metallic atoms, noctilucent clouds, and radio echoes and energy balance of the atmosphere and global change.

EP 710  Space Plasma Physics  3 Credits (3,0)

This course is a graduate course in advanced plasma physics and its space applications. A strong background knowledge of electrodynamics and a previous introductory course (at the undergraduate level) in plasma physics is strongly recommended. It will start from the microscopic fundamentals, and then derive useful approximations such as Vlasov theory, two-fluid theory and magnetohydrodynamics. Waves and instabilities in each of these descriptions will be investigated. Applications to the space environment will form a core component of this course.

EP 711  Computational Atmospheric Dynamics  3 Credits (3,0)

This is a second graduate course in atmospheric dynamics. Here, we emphasize the numerical solution of the governing fluid equations for various types of fluid flows. Various numerical methods and their associated limitations are discussed. Comparisons between real observations and simulations will be made wherever possible. Students will gain experience running large simulation code on a supercomputer. In addition to exams, students will be required to complete a hands-on project.

EP 712  Geophysical Fluid Dynamics  3 Credits (3,0)

This is the first graduate course in atmospheric dynamics. The thermodynamics of fluids and conservation laws are introduced, which lead to the Navier-Stokes equations describing fluid flow. Effects of rotation on fluids are described. Wave motions occurring in the atmosphere and oceans are described, and include gravity waves, Rossby waves and Kelvin waves, as well as tidal motions. Instability processes, some triggered by waves, are discussed, and the cascade of energy to smaller scales through turbulence is described. Global scale "mean" motions (winds and Hadley cells) are discussed. The dissipative effects of molecular diffusion in rarefied gases are also described.

EP 799  Special Topics in Engineering Physics  1-6 Credit

Individual independent or directed studies of selected topics.

EP 800  Dissertation  3-9 Credit

A doctoral-level research in Engineering Physics including an oral defense and a written dissertation satisfying all doctoral degree program guidelines. The work is supervised by the student's advisor and dissertation committee. The approval of the dissertation committee is required to receive final dissertation credit.